
Euler and improved Euler using SAGE

The goal is to find an approximate solution to the problem

y′ = f(x, y), y(a) = c, (1)

where f(x, y) is some given function. We shall try to approximate the
value of the solution at x = b, where b > a is given. This will be ex-
plained mathematically and using the software package SAGE, available from
http://sage.scipy.org. To use SAGE below on you machine, you will
have to (a) install SAGE, (b) “attach” the file eulers_method.sage file in
the examples subdirectory.

The basic idea can also be explained “algebraically”. Recall from the
definition of the derivative in calculus 1 that

y′(x) ∼= y(x + h)− y(x)

h
,

h > 0 is a given and small. This an the DE together give f(x, y(x)) ∼=
y(x+h)−y(x)

h
. Now solve for y(x + h):

y(x + h) ∼= y(x) + h · f(x, y(x)).

If we call h · f(x, y(x)) the “correction term” (for lack of anything better),
call y(x) the “old value of y”, and call y(x + h) the “new value of y”, then
this approximation can be re-expressed

ynew = yold + h · f(x, yold).

Tabular idea: Let n > 0 be an integer, which we call the step size.
This is related to the increment by

h =
b− a

n
.

This can be expressed simplest using a table.

x y hf(x, y)
a c hf(a, c)

a + h c + hf(a, c)
...

a + 2h
...

...
b ??? xxx

1



The goal is to fill out all the blanks of the table but the xxx entry and
find the ??? entry, which is the Euler’s method approximation for y(b).

Improved Euler’s method

Geometric idea: The basic idea can be easily expressed in geometric
terms. As in Euler’s method, we know the solution must go through the
point (a, c) and we know its slope there is m = f(a, c). If we went out
one step using the tangent line approximation to the solution curve, the
approximate slope to the tangent line at x = a + h, y = c + h · f(a, c)
would be m′ = f(a + h, c + h · f(a, c)). The idea is that instead of using
m = f(a, c) as the slope of the line to get our first approximation, use m+m′

2
.

The “improved” tangent-line approximation at (a, c) is:

y(a + h) ∼= c + h · m + m′

2
= c + h · f(a, c) + f(a + h, c + h · f(a, c))

2
.

(This turns out to be a better apprpximation than the tangent-line approx-
imation y(a + h) ∼= c + h · f(a, c) used in Euler’s method.) Now we know
the solution passes through a point which is “nearly” equal to (a + h, c + h ·
m+m′

2
). We now repeat this tangent-line approximation with (a, c) replaced

by (a + h, c + h · f(a, c). Keep repeating this number-crunching at x = a,
x = a + h, x = a + 2h, ..., until you get to x = b.

Tabular idea: The integer step size n > 0 is related to the increment by

h =
b− a

n
,

as before.
The improved Euler method can be expressed simplest using a table.

x y hm+m′
2

= hf(x,y)+f(x+h,y+h·f(x,y))
2

a c hf(a,c)+f(a+h,c+h·f(a,c))
2

a + h c + hf(a,c)+f(a+h,c+h·f(a,c))
2

...

a + 2h
...

...
b ??? xxx

2



The goal is to fill out all the blanks of the table but the xxx entry and find
the ??? entry, which is the improved Euler’s method approximation
for y(b).

The idea for systems of ODEs is similar. This is implemented below as
well.

• The SAGE program improved_eulers_method implements Improved
Euler’s method for finding numerically the solution of the 1st order
ODE y′ = f(x, y), y(a) = c. The ”x” column of the table increments
from x0 to x1 by h (so (x1-x0)/h must be an integer). In the ”y”
column, the new y-value equals the old y-value plus the corresponding
entry in the last column.

Here is how the syntax of the program works:

sage: RR = RealField(sci_not=0, prec=4, rnd=’RNDU’)

sage: x,y = PolynomialRing(RR,2).gens()

sage: improved_eulers_method(5*x+y-5,0,1,1/2,1)

x y (h/2)*(f(x,y)+f(x+h,y+h*f(x,y))

0 1 -1.87

1/2 -0.875 -1.37

1 -2.25 -0.687

sage: x,y=PolynomialRing(QQ,2).gens()

sage: improved_eulers_method(5*x+y-5,0,1,1/2,1)

x y (h/2)*(f(x,y)+f(x+h,y+h*f(x,y))

0 1 -15/8

1/2 -7/8 -95/64

1 -151/64 -435/512

• The SAGE program eulers_method implements Euler’s method for find-
ing numerically the solution of the 1st order ODE y′ = f(x, y), y(a) = c.
The ”x” column of the table increments from x0 to x1 by h (so (x1-
x0)/h must be an integer). In the ”y” column, the new y-value equals
the old y-value plus the corresponding entry in the last column.

Here is how the syntax of the program works:

sage: x,y=PolynomialRing(QQ,2).gens()

sage: eulers_method(5*x+y-5,0,1,1/2,1)

x y h*f(x,y)

0 1 -2

1/2 -1 -7/4

1 -11/4 -11/8

sage: RR = RealField(sci_not=0, prec=4, rnd=’RNDU’)

sage: x,y=PolynomialRing(RR,2).gens()

sage: eulers_method(5*x+y-5,0,1,1/2,1)

x y h*f(x,y)

0 1 -2.00

1/2 -1.00 -1.75

1 -2.75 -1.37

3



• The SAGE program eulers_method_2x2 implements Euler’s method for
finding numerically the solution of the 1st order system of two ODEs

x′ = f(t, x, y), x(t0) = x0.y′ = g(t, x, y), y(t0) = y0.

The ”t” column of the table increments from t0 to t1 by h (so (t1−t0)/h
must be an integer). In the ”x” column, the new x-value equals the
old x-value plus the corresponding entry in the next (third) column.
In the ”y” column, the new y-value equals the old y-value plus the
corresponding entry in the next (last) column.

Here is how the syntax of the program works:

To approximate y(1) using 3 steps, where

x′ = x + y + t, x(0) = 0,
y′ = x− y, y(0) = 0,

use the following SAGE commands:

sage: t, x, y = PolynomialRing(QQ,3).gens()

sage: f = x+y+t; g = x-y

sage: eulers_method_2x2(f,g, 0, 0, 0, 1/3, 1)

t x h*f(t,x,y) y h*g(t,x,y)

0 0 0 0 0

1/3 0 1/9 0 0

2/3 1/9 7/27 0 1/27

1 10/27 38/81 1/27 1/9

sage: RR = RealField(sci_not=0, prec=4, rnd=’RNDU’)

sage: t,x,y=PolynomialRing(RR,3).gens()

sage: f = x+y+t; g = x-y

sage: eulers_method_2x2(f,g, 0, 0, 0, 1/3, 1)

t x h*f(t,x,y) y h*g(t,x,y)

0 0 0.000 0 0.000

1/3 0.000 0.125 0.000 0.000

2/3 0.125 0.282 0.000 0.0430

1 0.407 0.563 0.0430 0.141

To numerically approximate y(1), where

(1 + t2)y′′ + y′ − y = 0, y(0) = 1, y′(0) = −1,

using 4 steps of Euler’s method, first convert to a system: y1′ =
y2, y1(0) = 1; y2′ = (y1− y2)/(1 + t2), y2(0) = −1.

sage: RR = RealField(sci_not=0, prec=4, rnd=’RNDU’)

sage: t, y1, y2=PolynomialRing(RR,3).gens()

sage: f = y2; g = (y1-y2)/(1+t^2)

sage: eulers_method_2x2(f,g, 0, 1, -1, 1/4, 1)

t x h*f(t,x,y) y h*g(t,x,y)

0 1 -0.250 -1 0.500

1/4 0.750 -0.125 -0.500 0.282

1/2 0.625 -0.0546 -0.218 0.188

3/4 0.625 -0.00781 -0.0312 0.110

1 0.625 0.0196 0.0782 0.0704

4



To numerically approximate y(1), where y′′ + ty′ + y = 0, y(0) = 1,
y′(0) = 0:

sage: t,x,y=PolynomialRing(RR,3).gens()

sage: f = y2; g = -y1-y2*t

sage: eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)

t x h*f(t,x,y) y h*g(t,x,y)

0 1 0.000 0 -0.250

1/4 1.00 -0.0625 -0.250 -0.234

1/2 0.938 -0.117 -0.468 -0.171

3/4 0.875 -0.156 -0.625 -0.101

1 0.750 -0.171 -0.687 -0.0156

5


